Musings

A random collection

STAT: Probability Distributions

Distribution Constraints Density Function Expectation Variance MGF
f(x) E[X] = \int x f(x) dx \text{Var}(X) = E[(X-\mu)^2] M_X(t) = E[e^{Xt}] = \int e^{xt} f(x)dx
Discrete distributions
Poisson X \sim \text{Po}(\lambda) k=0,1,2,\cdots P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \lambda \lambda e^{\lambda(e^t-1)}
Continuous distributions
Uniform X \sim U[a,b] -\infty < x < \infty, a<b f(x) = \frac{1}{b-a}\mathbf{1}_{[a,b]}(x) \frac{a+b}{2} \frac{(b-a)^2}{12}
Standard Normal Z \sim \mathcal{N}(0,1) -\infty < z < \infty f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2} 0 1 e^{\frac{1}{2}t^2}
Normal X \sim \mathcal{N}(\mu,\sigma^2) -\infty < x < \infty f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \mu \sigma^2 e^{\mu t+\frac{1}{2}\sigma^2 t^2}
Double Exponential -\infty < x < \infty, \lambda > 0 f_X(x) = \frac{\lambda}{2} e^{-\lambda\vert x \vert} 0 \frac{2}{\lambda^2}
One sided distributions
Gamma X \sim G(\alpha,\beta) x > 0, \alpha, \beta > 0 f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1}e^{-\beta x} \frac{\alpha}{\beta} \frac{\alpha}{\beta^2} \left(\frac{\beta}{\beta-t}\right)^\alpha
Exponential X \sim \exp(\beta) = G(1,\beta) = W(\frac{1}{\beta},1) f(x) = \beta e^{-\beta x} \frac{1}{\beta} \frac{1}{\beta^2} \left(\frac{\beta}{\beta-t}\right)
Chi-Square X \sim \chi^2(\nu) = G(\frac{\nu}{2},\frac{1}{2}) f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\nu/2-1}e^{-x/2} \nu 2\nu \left(\frac{1}{1-2t}\right)^{\nu/2}
Log Gamma
(Heavy Tailed)
Y = e^X \sim LG(\alpha,\beta), X \sim G(\alpha,\beta) y > 1, \alpha, \beta > 0 f_Y(y) = \frac{\beta^\alpha}{\Gamma(\alpha)}(\log y)^{\alpha-1}y^{-(\beta+1)} \left(\frac{\beta}{\beta-1}\right)^\alpha \left(\frac{\beta}{\beta-2}\right)^\alpha - \left(\frac{\beta}{\beta-1}\right)^{2\alpha}
Inverse Gamma
(Heavy Tailed)
Y = 1/X \sim IG(\alpha,\beta), X \sim G(\alpha,\beta) y > 0, \alpha, \beta > 0 f_Y(y) = \frac{\beta^\alpha}{\Gamma(\alpha)}y^{-(\alpha+1)}e^{-\beta/y} \left(\frac{\beta}{\alpha-1}\right) \left(\frac{\beta^2}{(\alpha-2)(\alpha-1)^2}\right)
Log Normal
(Heavy Tailed)
Y = e^X \sim LN(\mu,\sigma^2), X \sim \mathcal{N}(\mu,\sigma^2) y > 0 f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}}\frac{1}{y}e^{-\frac{1}{2\sigma^2}(\log y - \mu)^2}
Weibull X \sim W(a,\gamma) x > 0, a, \gamma > 0 f_X(x) = \frac{\gamma}{a^\gamma} x^{\gamma-1} e^{-(x/a)^\gamma}
Pareto – 2 Parameters
(Heavy Tailed)
X \sim P(\alpha, \theta) x > 0, \alpha, \theta > 0 f(x) = \frac{\alpha \theta^\alpha}{(\theta+x)^{1+\alpha}} \frac{\theta}{\alpha-1} \frac{2\theta^2}{(\alpha-1)(\alpha-2)}
Pareto – 3 Parameters
(Heavy Tailed)
X \sim P(\alpha, \beta, \theta) x > 0, \alpha, \beta, \theta > 0 f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\frac{\theta^\alpha x^{\beta-1}}{(\theta+x)^{\alpha+\beta}} \frac{\beta\theta}{\alpha-1} \frac{\beta(1+\beta)\theta^2}{(\alpha-1)(\alpha-2)}

Gamma Function (interpolates n!):

    \Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx, \text{ where } \alpha > 0
    \Gamma(\alpha+1) = \alpha \Gamma(\alpha)
    \Gamma(1) = 1
    \Gamma(n) = (n-1)!, \text{ for positive integer } n

Indicator Function:

    \mathbf{1}_{x \in A} = \begin{cases} x & x \in A \\ 0 & x \notin A \end{cases}

Written by curious

August 5, 2010 at 1:26 pm

Posted in statistics